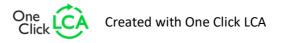




# **ENVIRONMENTAL PRODUCT DECLARATION**

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025


NT DECO 2025 Nordtreat Oy



## EPD HUB, HUB-4140

Published on 17.10.2025, last updated on 17.10.2025, valid until 16.10.2030

Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.2 (24 Mar 2025) and JRC characterization factors EF 3.1.







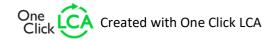


## **GENERAL INFORMATION**

### **MANUFACTURER**

| MANOTACTORER         |                                                                                                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| Manufacturer         | Nordtreat Oy                                                                                                            |
| Address              | Mestarintie 11 E, 01730 Vantaa, Finland                                                                                 |
| Contact details      | info@nordtreat.com                                                                                                      |
| Website              | www.nordtreat.com                                                                                                       |
| EPD STANDARDS, SCOPE | AND VERIFICATION                                                                                                        |
| Program operator     | EPD Hub, hub@epdhub.com                                                                                                 |
| Reference standard   | EN 15804+A2 & ISO 14025                                                                                                 |
| PCR                  | EPD Hub Core PCR Version 1.2, 24 Mar 2025                                                                               |
| Sector               | Construction product                                                                                                    |
| Category of EPD      | Third party verified EPD                                                                                                |
| Parent EPD number    | -                                                                                                                       |
| Scope of the EPD     | Cradle to gate with options, A4-A5, and modules C1-C4, D                                                                |
| EPD author           | Hanna Kämäräinen, Greenstep Oy                                                                                          |
| EPD verification     | Independent verification of this EPD and data, according to ISO 14025:  ☐ Internal verification ☑ External verification |
| EPD verifier         | Sarah Curpen, as an authorised verifier acting for EPD Hub Limited                                                      |

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.


#### **PRODUCT**

2

| NT DECO             |
|---------------------|
| -                   |
| -                   |
| Europe, Asia        |
| Finland             |
| Global              |
| 1.1.2024-31.12.2024 |
| No grouping         |
| -                   |
| 27,9                |
|                     |

### **ENVIRONMENTAL DATA SUMMARY**

| Declared unit                           | 1 litre  |
|-----------------------------------------|----------|
| Declared unit mass                      | 1,15 kg  |
| GWP-fossil, A1-A3 (kgCO <sub>2</sub> e) | 2,00E+00 |
| GWP-total, A1-A3 (kgCO₂e)               | 1,79E+00 |
| Secondary material, inputs (%)          | 0,53     |
| Secondary material, outputs (%)         | 21       |
| Total energy use, A1-A3 (kWh)           | 8,27     |
| Net freshwater use, A1-A3 (m³)          | 0,04     |







## PRODUCT AND MANUFACTURER

#### **ABOUT THE MANUFACTURER**

The increasing popularity of sustainable timber construction is accompanied by strong demand for durable, low-VOC flame retardants that meet the demands of the latest fire safety regulations, enable industrial fire protection of wood and are easy to maintain. At Nordtreat, we develop and produce non-toxic flame retardants for the global wood construction sector.

#### PRODUCT DESCRIPTION

NT DECO is a pH-neutral, water-based and low-VOC flame retardant for wood products. It provides a Euroclass B-s1, d0 reaction to fire performance with a clear or translucent toned finish. The product is available in thousands of translucent tones for interior and exterior use. NT DECO is typically used for fire protection of cladding, bearing elements and interior wood products in multistorey buildings.

To ensure lasting fire protection, our solutions include clear guidance for maintenance treatments, helping maintain compliance and safety throughout the building's lifecycle.

Further information can be found at www.nordreat.com.

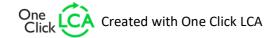
#### PRODUCT RAW MATERIAL MAIN COMPOSITION

| Raw material category | Amount, mass % | Material origin |
|-----------------------|----------------|-----------------|
| Metals                | -              | -               |
| Minerals              | 13             | South Korea     |
| Fossil materials      | 5              | EU              |
| Bio-based materials   | 14             | EU              |
| Water                 | 68             | -               |

#### **BIOGENIC CARBON CONTENT**

Product's biogenic carbon content at the factory gate

| Biogenic carbon content in product, kg C   | 0     |
|--------------------------------------------|-------|
| Biogenic carbon content in packaging, kg C | 0,004 |


#### **FUNCTIONAL UNIT AND SERVICE LIFE**

| Declared unit          | 1 litre |
|------------------------|---------|
| Mass per declared unit | 1,15 kg |
| Reference service life | -       |

### **SUBSTANCES, REACH - VERY HIGH CONCERN**

3

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).







## PRODUCT LIFE-CYCLE

#### SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

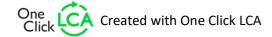
| Pro           | duct st   | tage          |           | mbly<br>ige |     |             | U      | se sta      | ge            |                        |                       | E                          | nd of I   | ife sta          | ge       | Beyond the<br>system<br>boundaries |          |           |  |  |
|---------------|-----------|---------------|-----------|-------------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|------------------|----------|------------------------------------|----------|-----------|--|--|
| <b>A1</b>     | A2        | А3            | A4        | A5          | B1  | B2          | В3     | В4          | В5            | В6                     | В7                    | <b>C1</b>                  | C2        | С3               | C4       |                                    | D        |           |  |  |
| ×             | ×         | ×             | ×         | ×           | R   | 용           | £      | R           | 동             | 용                      | 용                     | ×                          | ×         | ×                | ×        |                                    |          |           |  |  |
| Raw materials | Transport | Manufacturing | Transport | Assembly    | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | Deconstruction/ demolition | Transport | Waste processing | Disposal | Reuse                              | Recovery | Recycling |  |  |

Not declared = ND. Not relevant = NR

## **MANUFACTURING AND PACKAGING (A1-A3)**

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The production of the flame retardant product consists of four steps: mixing in two reactors, tinting and packing in canisters. During the first two steps,


water and flame retardant components are added and mixed. At tinting the product is made specially based on customer order. The calculations are done for an untinted product. After that the flame retardant product is packed in canisters and put onto pallets for storage. These calculations are made with the most typical canister size 25 litres. The manufacturing process requires electricity and the facilities are heated. A production loss of under 0,1 % is included in the study. For electricity modelling, a market-based approach is used.

Eventually, the product is moved out and transported to the wood treatment facilities.

### TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions. In this case the A4, Transport to the building site, represents the transportation to the wood treatment facility and the A5, Installation into the building represents here the treatment of the wood.

The transportation distance is defined according to the PCR. Average distance of transportation from production plant to the treatment site is calculated with three different groups: 52 % of the deliveries go to average of 150 km distance with smaller lorry, 39 % of the deliveries go to Europe, in average 2100 km by lorry and 7 % go to in average 5000 km by container ship. Vehicle capacity utilization volume factor is assumed to be 100 % which means full load. In reality, they may vary but as role of transportation emissions in total results is small, the variety in load is assumed to be negligible. Empty returns are not taken into account as it is assumed that return trip is used by the transportation company to serve the needs of other clients. Transportation





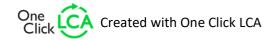


does not cause losses as product is packaged properly. Also, volume capacity utilization factor is assumed to be 100 % for the nested packaged products.

Installation includes the treatment of the wood products (electricity used by the vacuum coating machine) and the packaging waste generated. The treatment is calculated on the basis that a piece of wood is treated four times and 90 g/m2 of the flame retardant is inserted on one layer. After the wood products are treated with the flame retardant product the wood is transported to the building site. Calculations have been made with an average 145 km transportation distance with lorry of 32 ton.

### PRODUCT USE AND MAINTENANCE (B1-B7)

Modules B1-B7 are not declared in this EPD. When NT DECO is used indoors, there is no need for retreatment or maintenance. Only if the wood is damaged mechanically more than 3 mm deep, the damaged area should be treated with 350 g/m2 of NT DECO.


In outdoor use the treatment will last at least five years. After that the need for maintenance treatment should be checked and damaged surfaces should be treated with 175 g/m2 of NT DECO.

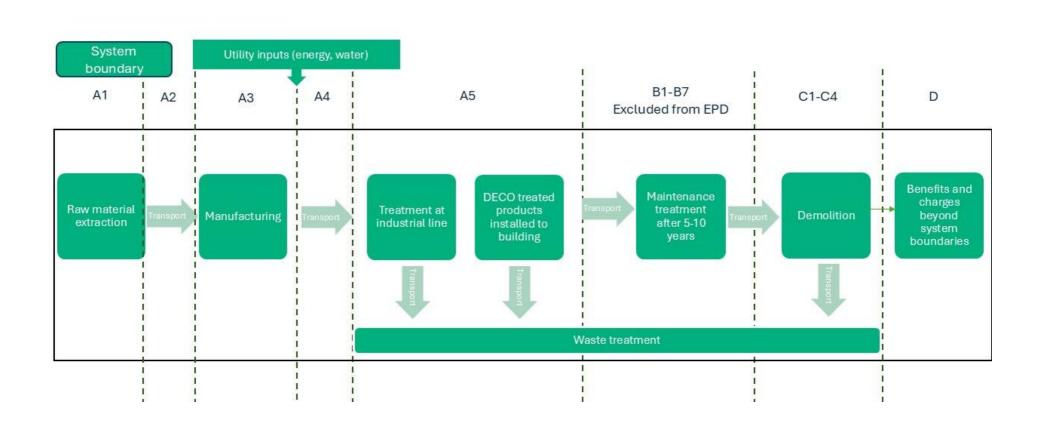
These calculations are made for indoor application where no retreatment is needed.

## PRODUCT END OF LIFE (C1-C4, D)

At the end-of-life, in the demolition phase 100% the waste is assumed to be collected as wood waste. It is assumed that the water present in product is lost as evaporation after flame retardant product application, therefore the end-of-life product has a lower weight than the declared product. The consumption of energy and natural resources is negligible for disassembling of the end-of-life product since the flame retardant product becomes a part

of another product. So, the impacts of demolition are assumed to be zero (C1). The dismantled structure on which the flame retardant product is applied to is delivered to the nearest construction waste treatment plant (C2). At the waste treatment plant, waste that can be reused, recycled or recovered for energy is separated and diverted for further use. (C3). The heating value of dried flame retardant product is assumed negligible and accordingly, no benefits are included (D).




NT DECO 2025

5





# **SYSTEM DIAGRAM**







## LIFE-CYCLE ASSESSMENT

#### **CUT-OFF CRITERIA**

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

#### **VALIDATION OF DATA**

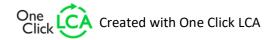
Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

#### **ALLOCATION, ESTIMATES AND ASSUMPTIONS**

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

| Data type                      | Allocation                  |
|--------------------------------|-----------------------------|
| Raw materials                  | No allocation               |
| Packaging material             | Allocated by mass or volume |
| Ancillary materials            | No allocation               |
| Manufacturing energy and waste | Allocated by mass or volume |

#### **PRODUCT & MANUFACTURING SITES GROUPING**


| Type of grouping                     | No grouping    |
|--------------------------------------|----------------|
| Grouping method                      | Not applicable |
| Variation in GWP-fossil for A1-A3, % | -              |

This EPD is product and factory specific.

#### LCA SOFTWARE AND BIBLIOGRAPHY

7

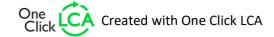
This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1 environmental data sources follow the methodology 'allocation, Cutoff, EN 15804+A2'.







## **ENVIRONMENTAL IMPACT DATA**


The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

## CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, EF 3.1

| Impact category                      | Unit         | A1        | A2       | A3        | A1-A3     | A4       | A5       | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1       | C2       | С3       | C4       | D         |
|--------------------------------------|--------------|-----------|----------|-----------|-----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|-----------|
| GWP – total <sup>1)</sup>            | kg CO₂e      | 1,13E+00  | 1,44E-01 | 5,14E-01  | 1,79E+00  | 2,87E-01 | 8,19E-02 | ND | 0,00E+00 | 2,90E-03 | 7,97E-01 | 0,00E+00 | 4,17E-02  |
| GWP – fossil                         | kg CO₂e      | 1,33E+00  | 1,44E-01 | 5,26E-01  | 2,00E+00  | 2,87E-01 | 6,89E-02 | ND | 0,00E+00 | 2,90E-03 | 5,78E-01 | 0,00E+00 | 4,17E-02  |
| GWP – biogenic                       | kg CO₂e      | -2,19E-01 | 0,00E+00 | -1,18E-02 | -2,31E-01 | 0,00E+00 | 1,18E-02 | ND | 0,00E+00 | 0,00E+00 | 2,19E-01 | 0,00E+00 | -3,62E-06 |
| GWP – LULUC                          | kg CO₂e      | 1,42E-02  | 5,84E-05 | 1,81E-04  | 1,44E-02  | 1,01E-04 | 1,18E-03 | ND | 0,00E+00 | 9,70E-07 | 1,46E-06 | 0,00E+00 | -6,20E-05 |
| Ozone depletion pot.                 | kg CFC-11e   | 2,33E-08  | 2,66E-09 | 1,22E-08  | 3,81E-08  | 5,70E-09 | 1,26E-09 | ND | 0,00E+00 | 5,79E-11 | 9,73E-11 | 0,00E+00 | -4,01E-10 |
| Acidification potential              | mol H⁺e      | 8,45E-03  | 1,43E-03 | 1,20E-03  | 1,11E-02  | 9,66E-04 | 3,34E-04 | ND | 0,00E+00 | 8,67E-06 | 4,94E-05 | 0,00E+00 | -2,35E-04 |
| EP-freshwater <sup>2)</sup>          | kg Pe        | 4,93E-04  | 8,27E-06 | 1,74E-04  | 6,74E-04  | 1,93E-05 | 2,41E-05 | ND | 0,00E+00 | 1,89E-07 | 8,11E-07 | 0,00E+00 | -2,20E-05 |
| EP-marine                            | kg Ne        | 2,10E-03  | 3,77E-04 | 2,84E-04  | 2,76E-03  | 3,10E-04 | 6,42E-05 | ND | 0,00E+00 | 2,91E-06 | 2,27E-05 | 0,00E+00 | -2,92E-05 |
| EP-terrestrial                       | mol Ne       | 1,99E-02  | 4,17E-03 | 3,01E-03  | 2,71E-02  | 3,38E-03 | 6,63E-04 | ND | 0,00E+00 | 3,16E-05 | 2,50E-04 | 0,00E+00 | -2,90E-04 |
| POCP ("smog") <sup>3</sup> )         | kg<br>NMVOCe | 4,59E-03  | 1,33E-03 | 1,29E-03  | 7,20E-03  | 1,42E-03 | 2,04E-04 | ND | 0,00E+00 | 1,37E-05 | 6,40E-05 | 0,00E+00 | -9,63E-05 |
| ADP-minerals & metals <sup>4</sup> ) | kg Sbe       | 1,82E-05  | 3,83E-07 | 2,07E-06  | 2,07E-05  | 9,91E-07 | 1,65E-06 | ND | 0,00E+00 | 9,49E-09 | 1,55E-08 | 0,00E+00 | -3,80E-08 |
| ADP-fossil resources                 | MJ           | 1,84E+01  | 1,96E+00 | 6,40E+00  | 2,67E+01  | 4,00E+00 | 2,75E+00 | ND | 0,00E+00 | 4,04E-02 | 5,33E-02 | 0,00E+00 | -5,80E-01 |
| Water use <sup>5)</sup>              | m³e depr.    | 1,26E+00  | 8,68E-03 | 9,64E-02  | 1,36E+00  | 1,99E-02 | 7,52E-02 | ND | 0,00E+00 | 1,96E-04 | 7,55E-03 | 0,00E+00 | -8,76E-03 |

<sup>1)</sup> GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

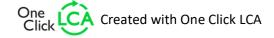
8







## ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, EF 3.1


| Impact category                  | Unit          | A1       | A2       | A3       | A1-A3    | A4       | A5       | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1       | C2       | С3       | C4       | D         |
|----------------------------------|---------------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|-----------|
| Particulate matter               | Incidence     | 7,62E-08 | 9,46E-09 | 9,51E-09 | 9,52E-08 | 1,88E-08 | 2,59E-09 | ND | 0,00E+00 | 1,96E-10 | 4,27E-10 | 0,00E+00 | -2,08E-09 |
| Ionizing radiation <sup>6)</sup> | kBq<br>11235e | 1,43E-01 | 2,12E-03 | 1,69E-02 | 1,62E-01 | 6,29E-03 | 1,53E-01 | ND | 0,00E+00 | 6,17E-05 | 1,11E-04 | 0,00E+00 | -1,15E-02 |
| Ecotoxicity (freshwater)         | CTUe          | 2,28E+01 | 2,30E-01 | 1,43E+00 | 2,44E+01 | 5,94E-01 | 3,22E-01 | ND | 0,00E+00 | 5,79E-03 | 1,87E-01 | 0,00E+00 | -5,46E-02 |
| Human toxicity, cancer           | CTUh          | 2,70E-09 | 2,61E-11 | 1,27E-10 | 2,85E-09 | 4,75E-11 | 3,51E-11 | ND | 0,00E+00 | 4,65E-13 | 7,19E-10 | 0,00E+00 | -4,85E-12 |
| Human tox. non-cancer            | CTUh          | 2,42E-08 | 1,06E-09 | 3,86E-09 | 2,92E-08 | 2,35E-09 | 1,74E-09 | ND | 0,00E+00 | 2,38E-11 | 2,17E-09 | 0,00E+00 | -1,83E-10 |
| SQP <sup>7)</sup>                | -             | 1,90E+01 | 9,59E-01 | 4,42E+00 | 2,44E+01 | 1,97E+00 | 9,74E-01 | ND | 0,00E+00 | 2,08E-02 | 1,88E-02 | 0,00E+00 | -2,31E-01 |

<sup>6)</sup> EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

### **USE OF NATURAL RESOURCES**

| Impact category                    | Unit | A1       | A2       | А3       | A1-A3    | A4       | A5        | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1       | C2       | С3        | C4       | D         |
|------------------------------------|------|----------|----------|----------|----------|----------|-----------|----|----|----|----|----|----|----|----------|----------|-----------|----------|-----------|
| Renew. PER as energy <sup>8)</sup> | MJ   | 4,79E+00 | 2,94E-02 | 2,99E+00 | 7,81E+00 | 8,09E-02 | 7,91E-01  | ND | 0,00E+00 | 7,90E-04 | 1,66E-03  | 0,00E+00 | -2,95E-01 |
| Renew. PER as material             | MJ   | 0,00E+00 | 0,00E+00 | 1,04E-01 | 1,04E-01 | 0,00E+00 | -1,04E-01 | ND | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  |
| Total use of renew. PER            | MJ   | 4,79E+00 | 2,94E-02 | 3,09E+00 | 7,92E+00 | 8,09E-02 | 6,88E-01  | ND | 0,00E+00 | 7,90E-04 | 1,66E-03  | 0,00E+00 | -2,95E-01 |
| Non-re. PER as energy              | MJ   | 1,56E+01 | 1,96E+00 | 4,36E+00 | 2,20E+01 | 4,00E+00 | 1,66E+00  | ND | 0,00E+00 | 4,04E-02 | -2,40E+00 | 0,00E+00 | -1,58E+00 |
| Non-re. PER as material            | MJ   | 0,00E+00 | 0,00E+00 | 1,09E+00 | 1,09E+00 | 0,00E+00 | -1,09E+00 | ND | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  |
| Total use of non-re. PER           | MJ   | 1,56E+01 | 1,96E+00 | 5,45E+00 | 2,30E+01 | 4,00E+00 | 5,74E-01  | ND | 0,00E+00 | 4,04E-02 | -2,40E+00 | 0,00E+00 | -1,58E+00 |
| Secondary materials                | kg   | 6,14E-03 | 9,07E-04 | 2,16E-03 | 9,20E-03 | 1,83E-03 | 5,22E-04  | ND | 0,00E+00 | 1,77E-05 | 1,12E-04  | 0,00E+00 | -4,48E-05 |
| Renew. secondary fuels             | MJ   | 8,76E-05 | 9,13E-06 | 3,91E-03 | 4,01E-03 | 1,87E-05 | 2,57E-06  | ND | 0,00E+00 | 1,80E-07 | 4,57E-07  | 0,00E+00 | -2,18E-07 |
| Non-ren. secondary fuels           | МЈ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | ND | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00 | 0,00E+00  |
| Use of net fresh water             | m³   | 3,20E-02 | 2,34E-04 | 7,33E-03 | 3,95E-02 | 5,59E-04 | 2,36E-03  | ND | 0,00E+00 | 5,54E-06 | 1,13E-04  | 0,00E+00 | -4,35E-04 |

9

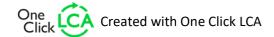


<sup>8)</sup> PER = Primary energy resources.





### **END OF LIFE – WASTE**


| Impact category     | Unit | A1       | A2       | А3       | A1-A3    | A4       | A5       | B1 | B2 | В3 | B4 | B5 | В6 | В7 | C1       | C2       | C3       | C4       | D         |
|---------------------|------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|-----------|
| Hazardous waste     | kg   | 7,21E-01 | 2,77E-03 | 3,20E-02 | 7,56E-01 | 5,39E-03 | 4,53E-03 | ND | 0,00E+00 | 5,26E-05 | 1,20E-02 | 0,00E+00 | -2,18E-03 |
| Non-hazardous waste | kg   | 1,04E+01 | 5,36E-02 | 1,32E+00 | 1,18E+01 | 1,27E-01 | 1,38E-01 | ND | 0,00E+00 | 1,24E-03 | 2,58E-01 | 0,00E+00 | -7,13E-02 |
| Radioactive waste   | kg   | 3,66E-05 | 5,25E-07 | 4,32E-06 | 4,15E-05 | 1,57E-06 | 3,29E-05 | ND | 0,00E+00 | 1,54E-08 | 2,84E-08 | 0,00E+00 | -2,89E-06 |

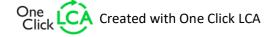
## **END OF LIFE – OUTPUT FLOWS**

| Impact category                  | Unit | A1       | A2       | А3       | A1-A3    | A4       | A5       | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1       | C2       | C3       | C4       | D        |
|----------------------------------|------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|----------|
| Components for re-use            | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Materials for recycling          | kg   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 1,86E-02 | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Materials for energy rec         | kg   | 0,00E+00 | 0,00E+00 | 2,23E-03 | 2,23E-03 | 0,00E+00 | 9,87E-03 | ND | 0,00E+00 | 0,00E+00 | 2,41E-01 | 0,00E+00 | 0,00E+00 |
| Exported energy                  | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Exported energy –<br>Electricity | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Exported energy –<br>Heat        | MJ   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |

## **ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930**

| Impact category      | Unit                    | A1       | A2       | A3       | A1-A3    | A4       | A5       | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1       | C2       | С3       | C4       | D        |
|----------------------|-------------------------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|----------|
| Global Warming Pot.  | kg CO₂e                 | 1,34E+00 | 1,43E-01 | 5,23E-01 | 2,01E+00 | 2,86E-01 | 6,99E-02 | ND | 0,00E+00 | 2,88E-03 | 5,78E-01 | 0,00E+00 | 4,18E-02 |
| Ozone depletion Pot. | kg CFC <sub>-11</sub> e | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | ND       | ND       | ND | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Acidification        | kg SO₂e                 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | ND       | ND       | ND | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| Eutrophication       | kg PO <sub>4</sub> ³e   | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | ND       | ND       | ND | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| POCP ("smog")        | kg C₂H₄e                | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | ND       | ND       | ND | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| ADP-elements         | kg Sbe                  | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | ND       | ND       | ND | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |
| ADP-fossil           | MJ                      | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | ND       | ND       | ND | ND | ND | ND | ND | ND | ND | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 |








### **ENVIRONMENTAL IMPACTS – GWP-GHG**

| Impact category       | Unit    | A1       | A2       | А3       | A1-A3    | A4       | A5       | B1 | B2 | В3 | B4 | B5 | В6 | B7 | C1       | C2       | С3       | C4       | D        |
|-----------------------|---------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|----------|
| GWP-GHG <sup>9)</sup> | kg CO₂e | 1,35E+00 | 1,44E-01 | 5,26E-01 | 2,02E+00 | 2,87E-01 | 7,01E-02 | ND | 0,00E+00 | 2,90E-03 | 5,78E-01 | 0,00E+00 | 4,17E-02 |

<sup>9)</sup> This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013). In addition, the characterization factors for the flows - CH4 fossil, CH4 biogenic and Dinitrogen monoxide - were updated in line with the guidance of IES PCR 1.2.5 Annex 1. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterization factor for biogenic CO2 is set to zero.

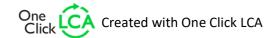






## **SCENARIO DOCUMENTATION**

## Manufacturing energy scenario documentation


| Scenario parameter                       | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electricity data source and quality      | <ul> <li>Electricity production, hydro, run-of-river (Reference product: electricity, high voltage)</li> <li>Electricity production, wind, &gt;3MW turbine, onshore (Reference product: electricity, high voltage)</li> <li>Electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, mounted (Reference product: electricity, low voltage)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                |
| Electricity CO2e / kWh                   | 0.0044, 0.0316 and 0.0802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| District heating data source and quality | <ul> <li>Heat and power co-generation, hard coal (Reference product: electricity, high voltage)</li> <li>Heat production, lignite briquette, at stove 5-15kW (Reference product: heat, central or small-scale, other than natural gas)</li> <li>Heat, from municipal waste incineration to generic market for heat district or industrial, other than natural gas (Reference product: heat, district or industrial, other than natural gas)</li> <li>Heat and power co-generation, natural gas, conventional power plant, 100MW electrical (Reference product: electricity, high voltage)</li> <li>Heat and power co-generation, natural gas, conventional power plant, 100MW electrical (Reference product: electricity, high voltage)</li> </ul> |
| District heating CO2e / kWh              | 1.03, 0.18, 0.62 and 0.0025 kg CO2e / MJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |





## **Transport scenario documentation A4**

| Scenario parameter                                              | Value                                                                                                                                                                                                                               |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel and vehicle type. Eg, electric truck, diesel powered truck | EURO 5 diesel powered truck, heavy oil powered container ship                                                                                                                                                                       |
| Average transport distance, km                                  | $52\%$ of the deliveries go to average of $150\mathrm{km}$ distance with smaller lorry, $39\%$ of the deliveries go to Europe, in average $2100\mathrm{km}$ by lorry and $7\%$ go to in average $5000\mathrm{km}$ by container ship |
| Capacity utilization (including empty return) %                 | 100                                                                                                                                                                                                                                 |
| Bulk density of transported products                            | 1150                                                                                                                                                                                                                                |
| Volume capacity utilization factor                              | 1                                                                                                                                                                                                                                   |



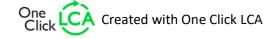




### **Installation scenario documentation A5**

| Scenario information                                                                                                                                                           | Value                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Ancillary materials for installation (specified by material) / kg or other units as appropriate                                                                                | -                                                                                                            |
| Water use / m <sup>3</sup>                                                                                                                                                     | -                                                                                                            |
| Other resource use / kg                                                                                                                                                        | -                                                                                                            |
| Quantitative description of energy type (regional mix) and consumption during the installation process / kWh or MJ                                                             | Market for electricity, low voltage<br>(Reference product: electricity, low voltage)<br>Consumption: 0,4 kWh |
| Waste materials on the building site before waste processing, generated by the product's installation (specified by type) / kg                                                 | Wooden pallet / 0,00987 kg  Plastic can / 0,0250 kg  Packaging film / 0,0005 kg                              |
| Output materials (specified by type) as result of waste processing at the building site e.g. collection for recycling, for energy recovery, disposal (specified by route) / kg | -                                                                                                            |
| Direct emissions to ambient air, soil and water / kg                                                                                                                           | -                                                                                                            |

14






## **End of life scenario documentation**

| Scenario information                                            | Value                                                |
|-----------------------------------------------------------------|------------------------------------------------------|
| Collection process – kg collected separately                    | -                                                    |
| Collection process – kg collected with mixed construction waste | -                                                    |
| Recovery process – kg for re-use                                | -                                                    |
| Recovery process – kg for recycling                             | 0,0186 kg                                            |
| Recovery process – kg for energy recovery                       | 0,2533 kg                                            |
| Disposal (total) – kg for final deposition                      | 0,0499 kg                                            |
| Scenario assumptions e.g. transportation                        | Transportation distance to waste processing is 50 km |

15







## THIRD-PARTY VERIFICATION STATEMENT

EPD Hub declares that this EPD is verified in accordance with ISO 14025 by an independent, third-party verifier. The project report on the Life Cycle Assessment and the report(s) on features of environmental relevance are filed at EPD Hub. EPD Hub PCR and ECO Platform verification checklist are used.

EPD Hub is not able to identify any unjustified deviations from the PCR and EN 15802+A2 in the Environmental Product Declaration and its project report.

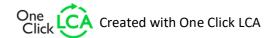
EPD Hub maintains its independence as a third-party body; it was not involved in the execution of the LCA or in the development of the declaration and has no conflicts of interest regarding this verification.

The company-specific data and upstream and downstream data have been examined as regards plausibility and consistency. The publisher is responsible for ensuring the factual integrity and legal compliance of this declaration.

The software used in creation of this LCA and EPD is verified by EPD Hub to conform to the procedural and methodological requirements outlined in ISO 14025:2010, ISO 14040/14044, EN 15804+A2, and EPD Hub Core Product Category Rules and General Program Instructions.

### **Verified tools**

Tool verifier: Magaly Gonzalez Vazquez


Tool verification validity: 27 March 2025 - 26 March 2028

Sarah Curpen, as an authorised verifier acting for EPD Hub Limited

17.10.2025



**VERIFIED ISO 14025** 

